|本期目录/Table of Contents|

[1]储亚,刘松玉,蔡国军,等.岩土体电阻率模型研究进展[J].南京工程学院学报(自科版),2017,15(02):1-9.[doi:10.13960/j.issn.1672-2558.2017.02.001]
 CHU Ya,LIU Song-yu,CAI Guo-jun,et al.Research Progress of Resistivity Models for Geotechnical Engineering[J].Journal of Nanjing Institute of Technology(Natural Science Edition),2017,15(02):1-9.[doi:10.13960/j.issn.1672-2558.2017.02.001]
点击复制

岩土体电阻率模型研究进展(PDF)
分享到:

《南京工程学院学报(自科版)》[ISSN:1672-2558/CN:SN32-1671/N]

卷:
第15卷
期数:
2017年02期
页码:
1-9
栏目:
出版日期:
2017-06-30

文章信息/Info

Title:
Research Progress of Resistivity Models for Geotechnical Engineering
作者:
储亚12刘松玉12蔡国军12边汉亮12
1. 东南大学岩土工程研究所, 江苏 南京 210096; 2. 江苏省城市地下工程与环境安全重点实验室(东南大学), 江苏 南京 210096
Author(s):
CHU Ya12 LIU Song-yu12 CAI Guo-jun12 BIAN Han-liang12
1. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety(Southeast University), Nanjing 210096, China
关键词:
多孔隙介质 砂性土 粘性土 污染土 电阻率模型
Keywords:
porous medium sand clayey soil contaminated soil resistivity model
分类号:
TU411
DOI:
10.13960/j.issn.1672-2558.2017.02.001
文献标志码:
A
摘要:
电阻率对岩土体等多孔隙介质内部结构探测的功能被广泛应用在原位测试中.但对于多孔隙岩土体介质的电阻率模型却一直存在着广泛的争论.很多学者基于试验研究提出了相应的电阻率应用模型,但是应用性和广适性得不到保证.Archie得出经典电阻率模型以来,各学者对不同岩土体以及特殊岩土体的电阻率模型研究进行了系统的总结,分析不同电阻率模型的应用条件和局限性.结果表明:电阻率可以作为岩土体特性评价的重要手段,但是由于土质条件的复杂性以及影响因素的多样性,需要对大量的试验进行总结; Archie电阻率模型可以较好的解释土体电阻率变化的物理意义,可以以此公式为基础进行拓展.最后对目前的电阻率模型的应用进行了总结,并给出今后电阻率发展的相应建议,以期为岩土工程测试研究提供理论基础.
Abstract:
Thanks to its outstanding function to reveal the internal structure of rock mass, the resistivity method is widely used in in-situ tests. But there is a general discussion on resistivity model of porous medium rock and soil mass. Based on the experimental research results, many scholars put forward the corresponding application model of resistivity. But the wide applicability and eligibility of these models are not guaranteed. From the classical resistivity model concluded by Archie, the research in different natural and special rock mass of various scholars was summarized in this article. And the application conditions and limitations of those different models were analyzed. It is shown that resistivity can be used as an important means for geotechnical engineering evaluation, and the physical significance of the resistivity change can be accounted for by Archie model. But due to the complexity of soil conditions and diversity of influence factors, a large number of trials were needed. Finally, corresponding suggestions on the development of resistivity were given to provide help for the research into geotechnical engineering testing.

参考文献/References:

[1] 汪魁. 多相土石复合介质电阻率特性理论及应用研究[D]. 重庆:重庆交通大学, 2013.
[2] PALACKY G J. Clay mapping using electromagnetic methods[J]. First Break, 1987, 5(8). 295-306.
[3] 孙建国. 阿尔奇(Archie)公式: 提出背景与早期争论[J]. 地球物理学进展, 2007, 22(2): 472-486.
[4] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62.
[5] KELLER G V, FRISCHKNECHT F C. Electrical Methods in Geophysical Prospecting[M]. NewYork: Pergamom Press, 1966.
[6] 石油测井情报协作组.测井新技术应用[M]. 北京:石油工业出版社,1998.
[7] SCHOEN J. Pertrophysik[M]. Stuttgart: Ferdinand Enke Verlag, 1983.
[8] PATNODE H W, WYLLIE M R J. The presence of conductive solids in reservoir rocks as a factor in electric log interpretation[J]. Journal of Petroleum Technology, 1950, 2(2): 47-52.
[9] EDMONDSON H N. Archies law: Electrical conduction in clear, water-bearing rock[J]. The Technical Review, 1988, 36(3): 4-13.
[10] ARULANANDAN K, MURALEETHARN K. Level ground soil lique-faction analysis using in situ properties[J]. Journal of Geotechnical Eng, 1988, 114(7): 753-7891.
[11] THEVANANYAGAM S. Electrical response of two-phase soil: Theory and applications[J]. Journal of Geotechnical Engi-neering, 1993, 119(8): 1250-1251.
[12] DAVID HUNTLEY. Relations between permeability and electrical resistivity in granular aquifers[J]. Ground Water, 1987, 24(4):466-474.
[13] US Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils[M]. Washington: US Department of Agriculture, 1954.
[14] 周蜜, 王建国, 范璇, 等. 珠三角地区的土壤电阻率温度修正模型[J]. 高电压技术, 2012, 38(3): 623-631.
[15] CAMPBELLR B, BOWER C A, RICHARDS L A. Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and ion concen-tration for soil extracts[C]//Soil Sci Soc Am Proc, 1948: 66-69.
[16] 韩立华, 刘松玉, 杜延军. 温度对污染土电阻率影响的试验研究[J]. 岩土力学, 2007, 28(6): 1151-1155.
[17] De Witte A J. Saturation and porosity from electric logs in shaly sands[J]. Oil and Gas Journal, 1957, 55(9): 89-97.
[18] POUPON A, LOY M E, TIXIER M P. A contribution to electrical log interpretation in shaly sands[J]. Journal of Petroleum Technology, 1954, 6(6): 27-34.
[19] HOSSIN A. Calcul des saturations en eau par la méthode du ciment argileux(formule d'Archie généralisée)[J]. Bulletin de L'Association des Technicienes du Petrole, 1960: 140.
[20] SIMANDOUX P. Dielectric measurements on porous media, application to the measurements of water saturation: study of behavior of argillaceous formations[J]. Revue de L'institut Francais du Petrole, 1963, 18: 193-215.
[21] WINSAUER W O, MCCARDELL W M. Ionic double-layer conduct-ivity in reservoir rock[J]. Journal of Petroleum Technology, 1953, 5(5): 129-134.
[22] WAXMAN M H, SMITS L J M. Electrical conductivities in oil-bearing shaly sands[J]. Society of Petroleum Engineers Journal, 1968, 8(2): 107-122.
[23] CLAVIER C, COATES G, DUMANOIR J. Theoretical and experi-mental bases for the dual-water model for interpretation of shaly sands[J]. Society of Petroleum Engineers Journal, 1984, 24(2): 153-168.
[24] DIEDERIX K M. Anomalous relationships between resistivity index and water saturations in the Rotliegend sandstone(The Netherlands)[C]//SPWLA 23rd Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts, 1982.
[25] SWANSON B F. Microporosity in reservoir rocks: its measure-ment and influence on electrical resistivity[J]. The Log Analyst, 1985, 26(06).
[26] CRANE S D. Impacts of microporosity rough pore surfaces and conductive minerals on saturation calculations from electrical measurements[C]//Trans of 31 th SPWLA Conference, 1990: 20.
[27] MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: Wiley, 1976.
[28] RHPADES J D, MANTEGHI N A, SHOUSE P J, et al. Soil electrical conductivity and soil salinity: new formulations and calibra-tions[J]. Soil Science Society of America Journal, 1989, 53(2): 433-439.
[29] 刘国华, 王振宇, 黄建平. 土的电阻率特性及其工程应用研究[J]. 岩土工程学报, 2004, 26(1): 83-87.
[30] HADZICK Z Z, GUBER A K, PACHEPSKY Y A, et al. Pedotransfer functions in soil electrical resistivity estimation[J]. Geoderma, 2011, 164(3): 195-202.
[31] 查甫生. 结构性非饱和土的电阻率特性及应用[D]. 南京: 东南大学, 2007.
[32] 张丽华, 潘保芝, 李舟波,等. 新三水导电模型及其在低孔低渗储层评价中的应用[J]. 石油地球物理勘探, 2010(3): 431-435.
[33] CAMPANELLA R G, WEEMEES I. Development and use of an electrical resistivity cone for groundwater contamination studies[J]. Canadian Geotechnical Journal, 1990, 27(5): 557-567.
[34] DARAYAN S, LIU C, SHEN L C, et al. Measurement of electrical properties of contaminated soil1[J]. Geophysical Prospecting, 1998, 46(5): 477-488.
[35] SON Y, OH M, LEE S. Influence of diesel fuel contamination on the electrical properties of unsaturated soil at a low frequ-ency range of 100 Hz—10 MHz[J]. Environmental Geology, 2009, 58(6): 1341-1348.
[36] YOON G, OH M, PARK J. Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer[J]. Environmental Geology, 2002, 43(1-2): 18-28.
[37] 马媛媛, 郭秀军, 朱大伟, 等. 生活垃圾渗滤液污染砂土电阻率变化机制实验研究[J]. 地球物理学进展, 2010(3): 1098-1104.
[38] 孙亚坤, 能昌信, 刘玉强, 等. 铬污染土壤电阻率特性及其影响因素研究[J]. 环境科学学报, 2011, 31(9): 1992-1998.
[39]KOMINE H. Evaluation of chemical grouted soil by electrical resistivity[J]. Proceedings of the ICE-Ground Improvement, 1997, 1(2): 101-113.
[40] TUMIDAJSK I, SCHMNACHER A S. On the relationship between porosity and electrical resistivity in cementations systems[J]. Cement and Concrete Research, 1996, 26(4): 539-544.
[41] LIU S Y, YU X J, MA X B. The electrical resistivity charac-teristics of the cemented soil[C]//Proceedings of International Symposium on Lowland Technology. Saga: Saga University Press, 2000: 185-190.
[42] 董晓强, 白晓红, 赵永强,等. NaOH 污染下水泥土的电阻率变化研究[J]. 岩土工程学报, 2007, 29(11): 1715-1719.
[43] ZHANG D, CHEN L, LIU S. Key parameters controlling electri-cal resistivity and strength of cement treated soils[J]. Journal of Central South University, 2012, 19: 2991-2998.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2016-09-18
基金项目: 国家自然科学基金重点项目(41330641); 国家自然科学基金项目(41202203)
作者简介: 储亚,博士,研究方向为岩土工程.E-mail: 136235507@qq.com
更新日期/Last Update: 2017-04-20